Tagged: Trending With Impact

What Causes Chemo Brain?

​​Researchers investigated potential therapeutic culprits of “chemo brain” in a trending new paper published by Oncotarget.

What Causes Chemo Brain?

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

A type of mental fog—known as “chemo brain”—is widely experienced by patients who have undergone cancer treatment. Cancer research institutions define chemo brain as impaired cognition, including cloudiness, memory loss and/or lack of concentration, that occurs before, during and/or after cancer treatment. This condition can negatively impact quality of life in a significant way. Chemo brain not only affects recovering individuals but also their loved ones, who often must take on additional caregiving responsibilities. Despite the name, chemotherapeutic drugs may not be the only treatments responsible for chemo brain. 

A chemotherapy protective drug called amifostine is commonly used in patients and paired with chemotherapeutic agents. Amifostine functions to protect healthy cells from DNA double strand breaks (DSBs) induced by chemotherapy. Another commonly prescribed cancer treatment is called etoposide, which is a chemotherapeutic drug that also targets DSBs. Etoposide, on the other hand, functions to increase DSBs in cancer cells. Recently, researchers have suggested that DSBs could play a role in learning, memory and immediate early gene (IEG) expression. The activity of IEGs can be used to identify neural circuits involved in learning and memory processes.

“Despite their wide clinical use, there is little information about how amifostine and etoposide affect learning and memory.”

THE STUDY

Researchers from Oregon Health and Science University conducted a novel study to observe the isolated effects of these common DSB-altering agents on learning, memory and IEG expression. Systemic injections of amifostine and etoposide were examined in both male and female mice. Their research paper was published by Oncotarget in January of 2022, and entitled, “Common cancer treatments targeting DNA double strand breaks affect long-term memory and relate to immediate early gene expression in a sex-dependent manner.”

“In this study, we investigated the effects of amifostine and etoposide on hippocampus-dependent and -independent fear conditioning [23] and IEG expression in male and female C57Bl/6J mice.”

Male and female mice were systemically dosed with either saline or the one of the cancer treatments, and then trained in fear conditioning. Markers of contextual and cued memory were tested 24 hours and two weeks post-training. The study consisted of four total experiments. The first experiment examined the effects of pre-training cancer treatment injections on long-term memory. The second experiment examined the effects of post-training cancer treatment injections on long-term memory. The third experiment examined the effects of pre-training injections on cFos and Nicotinamide adenine dinucleotide phosphate (NADPH). (Increasing and inhibiting the activity of NADPH oxidase impairs learning and memory.) The fourth experiment examined the effects of pre-training cancer treatment injections on DSBs.

“Hippocampal cFos and ΔFosB are essential for contextual learning and hippocampal synaptic plasticity [1213].”

RESULTS

The researchers found that pre- and post-training injections of amifostine at 107 mg/kg increased long-term contextual, but not cued, freezing in male mice. Amifostine decreased hippocampal DSBs, although it did not not change cFos levels in either male or female mice. The researchers observed that post-training injections of etoposide led to long-term decreases in both contextual and cued freezing among female mice. Etoposide decreased hippocampal NADPH in females and hippocampal DSBs in both sexes. Overall, etoposide decreased hippocampal γH2Ax (a DSB repair marker), hippocampal NADPH and cortical cFos in a sex-dependent manner.

“Post-training injections of amifostine affected long-term contextual fear memory; etoposide affected contextual and cued fear memory.”

CONCLUSION

“Our results suggest that amifostine and etoposide have distinct effects on learning and memory dependent on sex and timing of administration.”

The researchers assessed the effects of these DSB-altering agents and found results suggesting that they have a direct impact on learning and memory. Their impacts varied on the basis of sex and timing of administration before or after training. The researchers suggest that future studies examine these effects on specific brain regions to clarify the underlying mechanisms driving learning and memory changes. 

“Newer analogs of these drugs, such as PrC-210 [45], might reduce these side effects and improve patients’ quality of life. Future investigations are warranted to determine the role of DSBs in encoding, retrieval, and reconsolidation, and further our understanding of learning and memory processes in health and disease.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Gene Mutations and Neoantigens in Head and Neck Tumors

The aim of this exploratory study was to characterize the genomic and neoantigen changes in 23 paired primary and recurrent head and neck cell squamous-cell carcinomas.

X-Ray film of neck - front and side
True colour X-Ray film of neck – front and side
Listen to an audio version of this article

Head and neck cancer is a group of various tumors located in the oral cavity, oropharynx, larynx, and hypopharynx. Head and neck cell squamous-cell carcinomas (HNSCC) often result from tobacco use or human papillomavirus (HPV+) infection. In locally advanced HNSCC, the current therapies used are combined surgery, radiotherapy and chemotherapy. Despite the use of traditional treatments, up to 50% of patients relapse due to the increase in mutational burden as HNSCC advances. Few studies have investigated the therapeutic potential of neoantigens in HNSCC tumors.

“Prior work has characterized changes in the mutation burden between primary and recurrent tumors; however, little work has characterized the changes in neoantigen evolution.”

Neoantigens are new proteins/antigens that form on cancer cells after mutations occur in the tumor DNA. Certain neoantigens can promote anti-tumor immune responses and are potentially capable of controlling tumor progression. In an effort to characterize genomic and neoantigen changes in patients with HNSCC, researchers—from Washington University in St. LouisColumbia UniversitySt. Louis Children’s Hospital, and Siteman Cancer Center—investigated 23 paired primary and recurrent HNSCC tumors. Their paper, entitled, “Genomic and neoantigen evolution from primary tumor to first metastases in head and neck squamous cell carcinoma,” was chosen as the cover paper for Oncotarget’s Volume 12, Issue #6.

Patients and Samples

The researchers identified 23 biopsies from patients originally diagnosed with locally advanced HNSCC. Of the 23 patients in this study, 17 were male and 14 were tobacco smokers. The distribution of primary tumor location was nine in the oral cavity, seven in the oropharynx, six in the larynx, and one in the hypopharynx. The researchers note that all seven oropharyngeal primary tumor patients were HPV+. Each of the 23 patients received some combination of traditional treatment. Of these 23 patients, DNA and total RNA were independently extracted—totaling 69 samples. Twenty-three samples were from germlines, 23 were from primary tumors and 23 were from recurrent/metastatic tumors.

“To understand the recurrent mutation effect between primary and recurrent/metastatic tumors, we extract recurrently mutated genes (>1 sample mutated gene) from primary and recurrent/metastatic samples, separately.”

Recurrently Mutated Genes

The 23 germline blood samples were used in whole-exome sequencing (WES) data. The researchers also generated WES data using 46 paired primary and recurrent/metastatic samples from paraffin blocks and performed RNA sequencing successfully for 31 samples. After conducting RNA sequencing, they used Kallisto to predict gene expression in 16 primary tumors and 15 recurrent/metastatic tumors. A general trend showed that more mutations were within recurrent/metastatic tumors than in primary tumors. They performed KEGG pathways analysis to determine whether mutations occurred in pathways related to metastasis.

“Notably, ECM-receptor interaction pathway was extremely significant in recurrent/metastatic samples meaning that genes related to this pathway are more highly mutated than other pathway mutations in recurrent/metastatic samples.”

The TP53 gene was found to be the highest mutated driver gene in both sample groups, and the researchers identified BRCA1 and NOTCH1 as highly mutated driver genes in primary tumor samples. In recurrent/metastatic tumors, PIK3CA, ARID1A, RASA1, TSC2, and ERBB4 were mutated at higher rates than in primary tumor samples.

Infiltration of Immune Cells

To determine the infiltration of immune cells in primary tumors versus recurrent/metastatic tumors, the team performed immunohistochemistry. No significant differences in CD3+ cells, activated T cells, cytotoxic T cells, or  CD3+ FOXP3+ cells were found. A significant increase of PD-L1 (an immune checkpoint protein) was found in recurrent/metastatic tumors. Upon further examination of immune checkpoint molecules, the researchers found a decrease in the expression of PDCD1 and CTLA4, with PDCD1 significantly decreased.

“We next sought to determine if genes containing neoantigens were shared between patients. Most neoantigens were unique to an individual tumor.”

Neoantigen Trends

In order to predict neoantigens among 46 tumor samples, this team utilized OptiType and MuPeXI to define the candidate neoantigens. Most patients had unique neoantigens based on the individual tumor type, however, the researchers’ analysis identified multiple patients with neoantigens in shared genes. They found neoantigens in six genes shared between four or five patients. (Three genes were among primary tumors: RYR3, DNAH7 and TTN; and three genes were among recurrent tumors: TNN, PIK3CA and USH2A.) They found that, compared to patients without them, patients who shared neoantigens in these genes tended to have increased neoantigens, CD3+ CD8+ T cell infiltration and duration of survival with HNSCC.

“These patients have increased total neoantigens, and a trend toward increased duration of survival with disease, infiltration of CD8 cells, and CTL activity. This suggests HNSCC neoantigens can stimulate an anti-tumor immune response.”

Conclusion

In conclusion, six genes with predicted neoantigens were found in four or more HNSCC patients. The researchers explained that while there is considerably more work needed in order to expand on their results from this small sample, the observation of neoantigens in these shared genes is significant.

“This raises the possibility that the presentation of certain neoantigens are important for control of tumor growth. This small exploratory study will provide the justification for a larger study of neoantigens in HNSCC.”

Click here to read the full research paper, published by Oncotarget.

Behind the StudyDrs. Brian Van Tine and Charles Schutt discuss this research.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Can Purified Cholera Stop Obesity?

In this 2019 study, researchers investigated the effects of purified elements of cholera toxin in age-associated weight gain.

3D illustration of the gut microbiome
3D illustration of the gut microbiome

In recent years, scientists have made significant advancements to improve our understanding of the gut microbiome. This diverse environment—of somewhere around 39 trillion microorganisms living within the digestive tracts of vertebrates (including humans, and even insects)—includes bacteria, archaea, viruses, and fungi. However, a “healthy” gut microbiota remains difficult to define in humans. The contents of the gut microbiome are not only different between women and men, microbiomes differ between… everyone. Among unrelated humans, no more than 30% of the same bacterial strains are shared in the gut microbiome. 

Different microbiomes can present with different biological reactions to outside factors, including infections and medications, and can even display different symptoms reacting to cancer and other diseases. Studies have repeatedly found that the gut microbiome plays important roles in human mood, sleep, metabolism, digestion, the immune and nervous systems, and in chronic inflammatory disorders, such as obesity.

“Indeed, earlier studies have shown that gut microbe-immune interactions contribute to smoldering inflammation, adiposity, and weight gain.”

The Hygiene Hypothesis

Researchers continue to find evidence to support the “hygiene hypothesis.” The hygiene hypothesis postulates that a lack of beneficial early-life microbe exposures can result in a dysregulated immune system later in life. This lack of early-life microbe exposures followed by immune imbalances may be responsible for the increase in obesity and other chronic inflammatory disorders over the past forty years.

“Systemic immune imbalances arising from the gut have been proposed as a probable cause of obesity [8].”

In 2019, researchers from Massachusetts Institute of Technology (MIT) and Aristotle University of Thessaloniki conducted a study to test using purified elements of the otherwise dangerous cholera toxin as a vaccination in mouse models. Their theory was that this safe and well-established cholera-based immune adjuvant would cause an immune system reaction that reduces the inflammation associated with age-related obesity. Their research paper was published by Oncotarget and entitled, “Consuming cholera toxin counteracts age-associated obesity.” (Go Behind the Study to learn why the researchers decided to use the cholera toxin.)

The Study

First, the researchers used both inbred and outbred mouse models to test the effects of the cholera-toxin subunit B (ctB)—a component of the Dukoral® vaccine used in humans for cholera diarrhea prevention. For each mouse model tested in the study, four different groups of eight mice each were examined: a female control group, a vaccinated female group, a male control group, and a vaccinated male group. At four weeks of age, the study mice were given three doses every-other-week of ctB at 10 micrograms. The control mice were given sham doses. The researchers found that in ctB vaccinated mice, the oral vaccination prevented age-associated weight gain compared to the control mice in both models.

Next, the researchers used an obese mouse model to test the effects of ctB dosing in early-life and to test the effects of transfering their gut flora into another mouse. The researchers found that the obese-mouse microbiome was sufficient to trigger obesity and inflammation in other mice when compared to sham-dosed control mice. In the obese mouse model, ctB dosing in early life also inhibited age-associated weight gain. This probiotic inhibited weight gain in mice dosed in early-life, and also in mice dosed in adulthood.

“Although we discovered dramatic benefit after early-life exposures to ctB, mice were also significantly slimmer when dosed with ctB for the first time during adulthood at 12-wks-of-age or 24-wks-of-age.”

Conclusion

The researchers found that purified elements of the cholera toxin stabilized immunity, through the gut microbiome, and inhibited age-associated obesity in multiple mouse models. Further studies are necessary to determine the degree to which an early-life microbe exposure such as this impacts immunity versus first-time adulthood exposures. Humans have been taking pre- and probiotics for quite some time without a strong grasp of exactly how these microbe infusions work. This research contributed to a better understanding of how humans can modulate our own gut microbiome to improve many aspects of our health and well-being.

“This type of microbe-immune re-programming may ultimately target other diseases linked with obesity and inflammation such as diabetes [19], multiple sclerosis [64], and cancer [25].”

Click here to read the full research paper, published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Scientific Integrity

Trending With Impact: Unconventional Method Effectively Targets NSCLC

Researchers developed a divergent strategy to treat non-small cell lung cancer (NSCLC).

New ideas

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

The mammalian target of rapamycin (mTOR) operates within two distinct protein complexes—mTOR complex 1 (mTORC1) and complex 2 (mTORC2). These protein complexes are not yet fully understood, as they were only recently identified in humans in 1994. What researchers do know is that mTORC1 is involved in the regulation of many cellular processes and is a key mediator of cell growth and proliferation. mTORC1 is activated by growth factor receptor signals through the PI3K–AKT and RAS–ERK mitogen-activated protein kinase (MAPK) pathways.

The PI3K/AKT/mTOR pathway may be an efficacious target in the treatment of patients with non-small cell lung cancer (NSCLC). This theory is based on the identification of particular gene mutations in NSCLC that are associated with the PI3K/AKT/mTOR pathway. However, previous studies have not yet succeeded in defining an effective monotherapy or combination of therapies that targets this pathway while improving NSCLC patient outcome. 

Researchers from Institut CuriePSL UniversityXentechBioPôle AlfortHôpital Foch, and Centre Léon Bérard designed a study using a new methodology to test treatment combinations based on specific targets identified as biomarkers of resistance to PI3K-targeting treatments, and not based on the NSCLC mutations themselves. Their trending research paper was published by Oncotarget in 2021 and entitled, “High in vitro and in vivo synergistic activity between mTORC1 and PLK1 inhibition in adenocarcinoma NSCLC.”

“Our main strategy was therefore, using a panel of NSCLC PDXs, (i) to define predictive markers of response to RAD001 therapy and (ii) to identify possible combinations of treatments that may be able to reverse RAD001 resistance.”

THE STUDY

Researchers tested RAD001/Everolimus (an mTORC1 inhibitor) in vivo using NSCLC Patient-Derived Xenografts (PDXs), which demonstrated high antitumor efficacy. They next aimed to define predictive markers of response to RAD001 using real-time quantitative RT-PCR assays.

“In order to define predictive markers of response to RAD001, we used real-time quantitative RT-PCR assays to quantify the mRNA expression of a large number of selected genes.”

The team found three significantly highly expressed and targetable genes in NSCLC tumors resistant to RAD001: PLK1, CXCR4 and AXL. They then analyzed these genes for their prognostic value among NSCLC patients that were found in the publicly available database KMPLOT. This analysis revealed that of the three genes evaluated, only one high-gene expression was correlated with a negative impact on overall survival of patients with adenocarcinoma: PLK1. Given this data, the researchers next evaluated the in vivo efficacy of RAD001 combined with a PLK1 inhibitor, volasertib, in four PDX models. The RAD001 + volasertib combination demonstrated dramatic efficacy in three of the four models.

“In all tested PDXs, except LCF29, we have observed a significant, but variable, improvement of the antitumor efficacy of RAD001 + volasertib in comparison to each monotherapy (Figure 2A).”

To define this RAD001 + volasertib drug combination’s mechanism of action, the researchers conducted a pharmacodynamics (PD) study. The team then evaluated post-therapeutic proteins involved in the cell cycle, vascularization and carbonic anhydrase IX expression. These results were then validated using in vitro studies. 

CONCLUSION

“Our determination of relevant Pi3K-based therapeutic combination(s) was not supported, by the presence of actual molecular abnormalities, nor by physician therapeutic practices, but by the identification of predictive markers of resistance to Pi3K-based monotherapies.”

In summary, the researchers conclude that their study demonstrates that inhibiting both mTORC1 and PLK1 proteins induces synergistic antitumor activity in multiple models of NSCLC. In the discussion section of this paper, the authors detailed the divergent methodology they used to come to their conclusion. 

“This methodology may promote more relevant clinical trials and avoid non-efficient combinations, inacceptable toxicities, and expensive and time-consuming studies.”

Click here to read the full research paper, published by Oncotarget.

Read the press release here

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Promising Non-Small Cell Lung Cancer Prodrug

Researchers examined the preclinical prodrug LP-184 and its efficacy in treating non-small cell lung cancers that lack actionable targets or resistance-related genes.

3D illustration of lung cancer

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Between 20 and 40% of adults with non-small cell lung cancer (NSCLC) eventually go on to develop brain metastases. Over 40% of patients with NSCLC have limited treatment options due to a lack of actionable therapeutic targets. Treatment for such patients has been limited to non-targeted chemotherapy—an approach which increases the risk of developing drug-resistance due to underlying resistance-associated mutations. 

“Newer drugs that will be more potent and remain efficacious in NSCLC with such mutations could lead to better alternate or combinatorial therapies.”

Lantern Pharma (a pharmaceutical company developing targeted cancer therapies) created a new drug candidate and next generation member of the acylfulvene class of prodrugs, named LP-184. Researchers from Lantern Pharma and REPROCELL (a commercial contract research organization) conducted a study to test the anti-tumor activity of this preclinical compound in a variety of NSCLC cell lines. In 2021, Oncotarget published team’s pape, entitled, “The acylfulvene alkylating agent, LP-184, retains nanomolar potency in non-small cell lung cancer carrying otherwise therapy-refractory mutations.”

The Study

Despite LP-184’s highly-synthetic sounding name, the lead product in this acylfulvene prodrug (Illudins) is derived from, you guessed it, Jack-o-Lantern mushrooms. 

“Acylfulvenes have been derived from cytotoxic agents called Illudins, isolated from Jack-o-Lantern mushroom (Omphalotus illudens), that retain and improve the cytotoxicity of parent Illudins for use as anticancer agents.”

The anti-tumor activity of this compound is based on activation through reductive mechanisms, mediated by enzymes such as Prostaglandin Reductase 1 (PTGR1). PTGR1 is known to be upregulated in some tumors, including in tumors with mutations in KEAP1. LP-184 sensitivity was investigated in NSCLC cell lines with individual or combined mutations in KEAP1, KRAS, TP53, and STK11. 

“There is a high unmet need for effective therapies for NSCLC harboring mutations in these genes that have not only been considered undruggable till date but also are associated with loss of efficacy or resistance to multiple therapeutic strategies, at least in frontline regimens.”

The researchers tested LP-184 in vitro in 19 primary and metastatic NSCLC cell lines to determine the range of NSCLC settings that this compound might work best in. Clinical data analyses were also conducted by the researchers to predict tumor responsiveness to LP-184. In addition, the compound was examined in two mouse models of primary lung cancer. Mouse models were tested for sensitivity to LP-184 in both two- and three-dimensional culture systems.

“We sought to assess LP-184 activity in a panel of selected NSCLC adenocarcinoma cell lines, determine associations between genomic and transcriptomic profiles and responses of cell lines tested, and compare in vitro potency of LP-184 with that of approved chemotherapy agents.”

Conclusion

Among their many findings, the researchers demonstrated that LP-184 has high nanomolar potency in 11 of the 19 NSCLC cell lines tested—indicating broad NSCLC anti-tumor activity. In vivo, LP-184 showed efficacy in terms of tumor regression in one of the two mouse models.

“We propose further evaluation of LP-184 in multiple PTGR1 high NSCLC settings that may not necessarily be mutually exclusive, including in highly prevalent KEAP1 and KRAS mutant tumors (Figure 6), and in patients with lack of actionable targets or resistance-related genes with no effective therapy options available.”

Click here to read the full research paper, published by Oncotarget.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Analysis of Breast Cancer in Nigerian Women

In this trending paper published by Oncotarget in 2021, a cohort of Nigerian women were assessed for a useful biomarker in aggressive molecular subtypes of breast cancer.

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Forms of cancer can vary in prevalence and aggression in different populations of people around the world. For instance, incidence rates of breast cancer (BC) have been rising in Africa over the past few decades. Research finds that Nigerian women have the highest age-standardized mortality rate of breast cancer on the African continent. This population in particular also faces disproportionately aggressive molecular subtypes of breast cancer.

“BC in Nigeria is characterized by disproportionately aggressive molecular subtypes, with exceptionally high rates of triple-negative (TN) BC [4], similar to BC in other countries in West Africa [5] and among African American women in the United States [6].”

In order to develop better treatment strategies, there is a distinct need to identify biomarkers that indicate, and even predict, these aggressive subtypes of breast cancer in Nigerian women. In 2021, a new study was conducted by researchers from Duke UniversityUniversity of LagosObafemi Awolowo University Teaching HospitalUniversity of IbadanFederal Medical Center AbeokutaUNC Gillings School of Global Public HealthOur Lady of Apostle Catholic Hospital in IbadanUniversity of Alabama at BirminghamUniversity of Kentucky, and University of Kansas Medical Center. Their trending research paper was published by Oncotarget and entitled, “Association of high-sensitivity C-reactive protein and odds of breast cancer by molecular subtype: analysis of the MEND study.”

C-Reactive Protein

“C-reactive protein (CRP) is associated with risk and aggressiveness for several types of cancer.”

When there is inflammation in the body, levels of the C-reactive protein (CRP) increase. This easily measurable protein can be a useful biomarker of systemic inflammation, infection, or tissue damage. Previous studies show that circulating CRP has been elevated in various types of cancers; it has also been associated with tumor prognosis. Past studies about CRP’s association in breast cancer subtypes have been notably few, and none have focused on isolating subpopulations in Africa.

“Additionally, it is worth noting that most of these past studies have been conducted in populations from the United States and Europe, among mostly White study populations, and to our knowledge, none have been conducted in populations from Africa.”

The Study

In this study, 555 Nigerian participants were assembled—of which 296 were confirmed breast cancer cases, and 259 were controls. The researchers collected clinical and reproductive characteristics of each participant, including the controls. In their first analysis, the researchers observed that newly diagnosed cases of Nigerian breast cancer were significantly more likely to have high levels of highly-sensitive CRP (hsCRP) compared to the controls. After adjusting for socio-demographic, clinical, and reproductive variables, the team still observed significant statistical significance for high levels of hsCRP associated with Nigerian BC. The findings from this cohort study also showed that high hsCRP was associated with a four-fold increased odds of BC.

“We also provide novel evidence of associations between hsCRP and BC molecular subtypes, with significant associations observed for luminal A, TN, and HER-enriched subtypes.”

Conclusion

“In conclusion, our analysis revealed a positive association between hsCRP and odds of BC, overall and for all molecular subtypes. Because CRP is an easily measured biomarker in the blood, it may represent a useful predictor of BC in the Nigerian context. We urge larger studies, preferably prospective cohort studies, among women of African descent to further characterize this association.”

Click here to read the full research paper, published by Oncotarget.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Targeted Treatment for Recurrent Ovarian Cancer

In this 2018 paper, researchers studied a new targeted strategy to treat ovarian cancer.

Anatomy and physiology of Ovary under the microscopic in laboratory.
Anatomy and physiology of Ovary under the microscopic in laboratory.

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Sialyl-Thomsen-nouveau (STn)—a tumor stem cell-associated carbohydrate antigen—is a moiety. “Moiety” is a term used to name molecular particles identified among multiple types of molecules. STns have been found on protein markers of cancer stem cells (CSCs) in pancreatic, colon, and gastric malignancies. Researchers hypothesize that CSCs can survive adjuvant chemotherapy and are responsible for tumor resurgence in many cancers, including recurrent ovarian cancer (OvCa). 

“Unfortunately, despite aggressive surgery and adjuvant chemotherapy, most women with OvCa develop recurrent disease that is ineffectively treated with current therapies. Novel treatment strategies are urgently needed to target chemoresistant disease.”

Researchers from Massachusetts General Hospital, Siamab Therapeutics, Inc., and Harvard Medical School conducted a novel research study in 2018 and authored a paper published by Oncotarget, entitled, “Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau.”

“Accumulating research has revealed not only the importance of CSCs in tumor initiation, metastasis, recurrence, and chemoresistance, but also the potential of CSC-directed therapies to impact patient survival.”

The Study

Researchers often use CD133 (a cell surface antigen) as a marker to detect and sequester CSCs in various solid tumors. In this study, the team analyzed the expression of STn and CD133 in ovarian cancer cell lines, their colony and sphere formation capacity, response to cytotoxic chemotherapy, and STn’s response to two targeted antibody drug conjugate (anti-STn-ADC) treatments in vivo and in vitro

“Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features.”

In a subset of human OvCa cell lines, the researchers found that STn and CD133 were co-expressed. They also found that STn+ and CD133+ cells have increased colony formation capacity and elevated levels of STn increases sphere formation. Both of the anti-STn-ADC treatments had anti-cancer effects in the OvCa cell lines in vivo and in vitro. These findings show that STn demonstrates some stem-like properties and may be a viable therapeutic target in ovarian cancer.

“In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations.”

Conclusion

“Our finding that targeting STn+ cells in vivo with a highly specific antibody conjugated to auristatin resulted in marked decreases in tumor burden without any obvious toxicity suggests that an anti-STn ADC approach may serve as a viable option in eliminating non-CSC as well as some CSC populations.”

Click here to read the full scientific study, published by Oncotarget.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube



Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: ONC201 Induces Apoptosis in Breast Cancer

A novel therapeutic combination converts anti-proliferative effects in breast cancer cells to pro-apoptotic.

Trending With Impact: ONC201 Induces Apoptosis in Breast Cancer
3D illustration of the stages of cell apoptosis.

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

In the 1990s, Dr. Wafik El-Deiry’s cancer research laboratory discovered a gene that encodes a protein, called death receptor 5, or TRAIL receptor 2. TRAIL is a protein that induces the process of cell death, or apoptosis. This pathway activates the body’s innate immune system and is capable of suppressing cancer cells by inducing apoptosis. 

After this discovery, researchers from the same lab considered the notion that increasing the production of TRAIL to enhance the body’s own immune response may have a safe therapeutic benefit in the treatment of cancer. The team searched for small molecules capable of upregulating the TRAIL gene and discovered the therapeutic compound TIC10, also known as ONC201. ONC201 is a well-tolerated drug currently being evaluated in advanced clinical trials for the treatment of various malignant solid tumors, including refractory metastatic breast cancer.

Researchers in Dr. El-Deiry’s laboratory have continued to investigate this drug in order to learn more about how it works, and what tactics or combinations may be used to produce better results for cancer patients. In a 2016 study, the researchers learned that ONC201 produces heterogeneous results in different tumor types.

“The question is, with this specific drug, what is the pattern of response, what determines that, and how can we get it to work a little bit better,” Dr. El-Deiry said in a recent Oncotarget interview.

Based out of Temple UniversityFox Chase Cancer CenterBrown University, and the El-Deiry Cancer Research Laboratory, researchers wrote a paper detailing their latest study on ONC201. The paper was published by Oncotarget in 2020 and entitled, “TRAIL receptor agonists convert the response of breast cancer cells to ONC201 from anti-proliferative to apoptotic.”

THE STUDY

Led by first-author Dr. Marie Ralff, the researchers in this study found that ONC201 induces differential responses across various breast cancer tumor subtypes. Few breast cancers are responsive to TRAIL, and one subtype that is responsive to TRAIL is triple-negative breast cancer.

“We saw that in some of these tumor types (the triple-negative breast cancer type in particular) the compound was having a pro-apoptotic effect, and in other [breast cancer] tumor types, it was having an anti-proliferative effect,” said Dr. Ralff.

When comparing in vivo and in vitro results of the drug, the team found that the pro-apoptotic effects translated to efficacy, while the anti-proliferative effects did not. The researchers then decided to investigate strategies to convert breast cancer cell response to ONC201 from anti-proliferative to apoptotic. ONC201 affects two known mechanisms of TRAIL resistance in breast cancer: death receptor 5 and anti-apoptotic proteins. This fact led the researchers to introduce a TRAIL receptor agonist antibody in combination with ONC201.

“If we pretreat TRAIL resistant breast cancer cells with ONC201, the level of surface death receptor 5 goes up and the intracellular levels of anti-apoptotic proteins go down, thereby priming the cells to undergo death through the TRAIL pathway. So, if we then add in a TRAIL receptor agonist, it induces apoptosis in a very potent way,” Dr. Ralff said.

CONCLUSION

“The concept is when cells are treated with the small molecule compound, not a whole lot happens. When cells are treated with TRAIL, not a whole lot happens. When you put them together, it’s like flipping a switch. The cells now undergo potent cell death,” Dr. El-Deiry said.

The potential efficacy of this therapeutic combination was strengthened by results in the study showing that ONC201 paired with the TRAIL receptor agonist antibodies is non-toxic to fibroblasts. The researchers also showed that the natural killer cells are only active against the breast cancer cells that have been exposed to ONC201. In vivo studies reaffirmed the safety of this combination in mouse models.

Click here to read the full research  study, published by Oncotarget.

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Low-Dose Chemo Inhibits Resistant Breast Cancer

In this trending in vitro study, researchers assessed the efficacy of low-dose 6-mercaptopurine and 5-azacitidine to inhibit high resistance triple-negative breast cancer cells.

Photomicrograph of a breast cancer (grade 3 invasive ductal carcinoma) with frequent mitoses (mitotic figures), including a large central atypical mitoses.
Photomicrograph of a breast cancer (grade 3 invasive ductal carcinoma) with frequent mitoses (mitotic figures), including a large central atypical mitoses.

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Triple-negative breast cancer (TNBC) accounts for 10-15% of all breast cancers. “Triple-negative” in this subtype of breast cancer cell refers to the lack of HER2 protein and estrogen and progesterone receptors. This means that TNBC cannot be treated with hormone inhibition and must be treated with conventional chemotherapy. In addition, many of these breast cancer cells can opportunistically switch between proliferation and quiescence—a difficult phenotype to treat. Patients diagnosed with this highly adaptable cancer frequently relapse and develop resistance to treatments.

In 2021, researchers from The University of Texas MD Anderson Cancer Center conducted a research study in hopes of developing a safe and effective therapeutic combination to treat resistant triple-negative breast cancer. Their paper, published in Oncotarget’s Volume 12, Issue 7, was entitled: “Inhibition of resistant triple-negative breast cancer cells with low-dose 6-mercaptopurine and 5-azacitidine.” 

The Study

“Evidence suggests that SUM149-metabolic adaptable (MA) cells are a suitable model of resistant human triple-negative breast cancer (TNBC) cells that can survive bottlenecks in the body, including therapeutic interventions, by opportunistically switching between quiescence and cell proliferation [578].”

In this in vitro study, researchers cultured three highly drug-resistant and metastatic progenitor-like TNBC cell lines with opportunistic switching between quiescence and proliferation. Researchers focused on designing a safe treatment that is effective in both low- and high-risk patients. The researchers note that it was critical to their study that the regimen is proven safe to administer to patients for early use in the minimal residual disease (MRD) stage after surgery, and before clinical metastasis is detected.

“For a potential therapy to be suitable at the MRD stage, it must be safe (an important criterion prior to clinical relapse) and disrupt heterogeneous progenitor-like cancer cells that evolve into clinical metastases.”

Two chemotherapy and immunosuppressive drugs (ribonucleoside analogues) were tested on the cell lines at low doses for the sake of viability in the MRD stage: 6-mercaptopurine (6-MP) and 5-azacitidine (5-AzaC). Both of these drugs have been clinically proven to be well-tolerated and to have drug-sensitizing, quiescence-stabilizing, and apoptosis-inducing effects in cancer cells.

“We chose 5-AzaC because it could complement 6-MP’s effects on the transcriptome and epigenome, and—as indicated by many Phase 1 clinical trials—5-AzaC is well tolerated [11].”

Results & Conclusion

“Our studies suggest that low-dose 6-MP, which is a purine analogue and very effective in maintaining remission in IBD [9], inhibits highly adaptable TNBC cells in our model, presumably by disrupting their transcriptome and epigenome.”

Researchers found that these low-dose therapeutics take several weeks to become effective. Despite the low dose, 6-MP (complimented by 5-AzaC) was capable of inhibiting highly adaptable TNBC cells. The researchers also point out that, based on decades of 6-MP’s use in patients with inflammatory bowel disease (IBD), this drug may be used regularly to modulate the immune system and prevent disease recurrence through its ability to inhibit chronic inflammation associated with advanced cancers.

“We suggest that low dose 6-MP and other drugs that would complement 6-MP’s action, such as 5-AzaC, could be suitable for preventing recurrence and metastasis in high-risk breast cancers. 6-MP could be taken lifelong if it is necessary for maintaining a long-term remission.”

Click here to read the full scientific study, published by Oncotarget.

YOU MAY ALSO LIKE: Latest Oncotarget Videos Hosted on LabTub TV

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Novel Biomarkers in Bladder Cancer

Researchers from the University of Houston and UT Southwestern Medical Center conducted a study which aimed to screen urine for potentially useful protein biomarkers of bladder cancer.

3D Illustration of the urinary bladder.
3D Illustration of the urinary bladder.

The Trending with Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Bladder cancer is four times more common among men than women, and it is the sixth most common cancer diagnosis in the United States. However, researchers have found that cystoscopy—the primary method physicians use to diagnose patients with bladder cancer—is relatively invasive, expensive, and has the potential to cause urinary tract infections. 

“In contrast, urine is a noninvasive and readily available biological fluid that can be used for diagnostic tests.” 

In 2021, researchers from the University of Houston and UT Southwestern Medical Center conducted a study which aimed to screen urine for possibly useful protein biomarkers of bladder cancer. The paper they authored was published in Oncotarget’s Volume 12, Issue 8, and entitled: “Urine protein biomarkers of bladder cancer arising from 16-plex antibody-based screens.”

“Urine biomarkers could potentially provide preliminary confirmation of low-grade BC [bladder cancer] before invasive procedures are performed and facilitate surveillance of BC, as reviewed [9].”

The Study

Patients may benefit in a number of different ways by using urine as fluid in diagnostic testing for bladder cancer. Urine is readily bioavailable, non-invasive, and it can also be collected and tested on a regular basis. Patients can even use various cost-effective point-of-care diagnostic tools, including at-home testing. First, the researchers assessed whether there were useful biomarkers of bladder cancer to be found in this fluid. The team used Luminex screening to test for both low and high levels of 16 proteins utilizing highly specific antibody-protein interactions.

“In this study, Luminex screening was used to simultaneously assay the protein abundances of 16 potential biomarkers in different stages of bladder cancer and then compared to urology clinic controls.” 

ELISA validation was then used to determine which proteins were significantly elevated in bladder cancer. They found that levels of three urine proteins were capable of distinguishing between control and bladder cancer urine. One protein was also found to be capable of discriminating between high- and low-grade disease, and the successive clinical stages of bladder cancer.

“Upon ELISA validation, urine IL-1α, IL-1ra, and IL-8 were able to distinguish control urine from urine drawn from various bladder cancer stages, with IL-8 being the best discriminator.”

Conclusion

“These studies indicate that urine IL-1α, IL-1ra, and IL-8 are potential biomarkers of BC, two of which re-affirm previous reports.”

The researchers note that these newer urine biomarkers must be analyzed in larger cohorts, in specific clinical contexts, and compared to the performance of current diagnostic tools, such as the Bladderchek and UroVysion FISH assay.

“Looking forward, systematic studies in larger patient cohorts are warranted to establish the specific clinical contexts in which these markers may be used, including the following: (i) for initial diagnosis of BC, (ii) for surveillance of tumor recurrence, and/or (ii) for assessing treatment response following BCG therapy or other therapeutic modalities.”

Click here to read the full scientific study, published by Oncotarget.

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.