Tagged: Research

CDR3s and Renalase-1 Correlate with Increased Melanoma Survival 

Our group has demonstrated that chemical complementarity between tumor resident, T-cell receptor, complementarity-determining region 3 (CDR3s), and MAGEA3/6 correlates with increased survival in patients with melanoma.”

In this study, Saif Zaman, Fred S. Gorelick, Andrea Chrobrutskiy, Boris I. Chobrutskiy, Gary V. Desir, and George Blanck from Yale School of MedicineVeteran’s Administration Healthcare SystemOregon Health and Science University HospitalMorsani College of Medicine, and the H. Lee Moffitt Cancer Center and Research Institute, investigated the chemical complementarity between melanoma-resident T-cell receptor (TCR) complementarity-determining region 3 (CDR3) amino acid sequences (AAs) and the renalase-1 protein. On August 5, 2024, their research paper was published in Oncotarget‘s Volume 15, entitled, “Chemical complementarity of tumor resident, T-cell receptor CDR3s and renalase-1 correlates with increased melanoma survival.”

The Study

The researchers investigated the potential of the RP220 peptide as an antigenic target for T cells by assessing the electrostatic and hydrophobic complementarity between T-cell receptor (TCR) CDR3s and the RP220 peptide of the renalase (RNLS) protein. They found that higher complementarity scores were linked to significantly improved survival probabilities, with hydrophobic forces further refining these distinctions. The associations varied depending on the dataset and method used.

The study also explored correlations between TCR CDR3-RNLS amino acid alignments and immune gene expression. Several immune signature genes, such as CD86, TIGIT, CIITA, and CD4, were significantly associated with better overall survival when showing higher complementarity scores.

Researchers also examined how RNLS expression levels affected these correlations. They found that higher RNLS mRNA expression was associated with worse survival, while lower RNLS expression combined with high complementarity scores predicted better outcomes. This trend held for both the full-length RNLS protein and the RP220 peptide.

The study revealed that specific regions of the RNLS protein, including the RP220 peptide, had higher complementarity with TCR CDR3s, suggesting they may serve as potential antigenic targets.

Discussion

The researchers explored the potential of the RNLS protein as a tumor antigen by examining the chemical complementarity between melanoma tumor-resident T-cell receptor (TCR) CDR3s and the amino acid (AA) sequence of RNLS. They found that increasing complementarity correlated with improved overall survival (OS) outcomes, supporting previous in vitro and in vivo data. This suggests that RNLS could be recognized by TCRs, triggering immune responses against melanoma.

Gene expression analyses revealed that as complementarity scores between TCRs and RNLS AAs increased, so did the expression of T-cell activation-associated genes, indicating enhanced T-cell activity and anti-tumor immune responses. The association between TCR complementarity and OS probabilities was more pronounced in cases with low RNLS expression levels, suggesting that high complementarity may be particularly beneficial in tumors with reduced RNLS-mediated immune inhibition.

These findings suggest that RNLS could serve as an antigen for TCRs in melanoma, supporting further exploration of its potential as a target for immunotherapy and vaccine design.

In conclusion, this research suggests that RNLS could potentially serve as an antigen for T-cell receptors (TCRs) in melanoma. The correlation between TCR complementarity to RNLS and improved overall survival supports the idea that T-cell responses targeting RNLS may play a role in antitumor immunity. These findings highlight the potential of RNLS as a valuable target for immunotherapy and vaccine development for melanoma treatment. 

Further research in this area is warranted.

Click here to read the full research paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that has published primarily oncology-focused research papers since 2010. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com

Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

Combining Regorafenib and TAS102 to Target Gastrointestinal Cancers and Overcome Cancer Stemness

In this research paper, researchers demonstrate a promising new treatment option for refractory metastatic gastrointestinal cancers using a combination of two FDA-approved drugs.

Researchers Jun Zhang, Lanlan Zhou, Shuai Zhao, and Wafik S. El-Deiry from Fox Chase Cancer Center and Brown University explore the potential of combining TAS102 (trifluridine/tipiracil) and regorafenib as a treatment option for gastrointestinal (GI) cancers. Their research paper, published in Oncotarget’s Volume 15 on July 2, 2024, is entitled, “Regorafenib synergizes with TAS102 against multiple gastrointestinal cancers and overcomes cancer stemness, trifluridine-induced angiogenesis, ERK1/2 and STAT3 signaling regardless of KRAS or BRAF mutational status.”

The Study

The combination of two FDA-approved drugs, TAS102 and regorafenib, has shown promising results in preclinical studies. TAS102 is an oral formulation consisting of trifluridine (FTD) and tipiracil hydrochloride (TPI). It has been approved by the US FDA for the treatment of refractory metastatic colorectal cancer and metastatic gastric cancer. Regorafenib is a multi-target tyrosine kinase inhibitor that inhibits tumor angiogenesis and cell proliferation and is approved for the treatment of gastrointestinal cancers.

Recent studies have shown that TAS102, in combination with regorafenib, can lead to improved survival and restrict tumor progression. The combination therapy has been found effective in multiple gastrointestinal cancer cell lines, including colorectal, gastric, and pancreatic cancers.

Cancer stem cells (CSCs) are a subpopulation of cancer cells that contribute to tumor growth, recurrence, and chemo-resistance. Targeting CSCs can be an effective approach to overcoming therapy resistance and preventing tumor progression. TAS102, in combination with regorafenib, has been shown to reduce the stemness of colorectal cancer cells, inhibiting the formation of colonospheres and reducing the CD133+ subpopulation.

Tumor angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. TAS102 monotherapy has been found to promote angiogenesis in tumors harboring a BRAF mutation. However, when combined with regorafenib, TAS102-induced angiogenesis is abrogated, as regorafenib inhibits the formation of microvessels in xenografted tumors.

The combination therapy of TAS102 and regorafenib regulates several signaling pathways, including ERK1/2 and STAT3, and modulates the expression of thymidylate synthase (TS), which is involved in drug resistance.

Conclusion

The combination of TAS102 and regorafenib shows synergistic effects in preclinical studies, inhibiting tumor growth, reducing the stemness of cancer cells, and inhibiting angiogenesis. Further research is needed to explore the efficacy of this combination therapy in clinical settings and to identify potential biomarkers of drug sensitivity. The TAS102 plus regorafenib drug combination may be further tested in gastric and other GI cancers.

“Recent studies have shown that TAS102 in combination with regorafenib can lead to improved survival and restrict tumor progression.”

Click here to read the full research paper in Oncotarget.

Oncotarget is an open-access, peer-reviewed journal that publishes primarily oncology-focused research papers. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com

Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative), and Dimensions (Digital Science).

Click here to subscribe to Oncotarget publication updates.

For media inquiries, please contact media@impactjournals.com.

Oncotarget Uses TrendMD to Expand Research Impact

Oncotarget began using TrendMD—a platform that recommends relevant content to a large network of research readers.

Earth
Listen to an audio version of this article

Oncotarget has started a new venture to expand our reach and connect with other relevant platforms using TrendMD. The TrendMD widget has been applied at the bottom of all research papers on Oncotarget.com to serve recommended content to our readers, and readers on thousands of other high-traffic websites and scholarly platforms. Recommended content is based on the content currently being viewed, content that has been viewed in the past, and content other similar readers are viewing.

“[TrendMD’s] recommendation algorithms continuously optimize the placements of links to your content for the right audience while readers are actively looking for something interesting to discover.” —Source: TrendMD.com

This platform uses algorithms similar to those that Amazon uses to help bring fresh new relevant content to interested readers. The TrendMD widget recommends content both derived from Oncotarget.com and from other biomedical journals and articles publishing similar content. They also use collaborative filtering and track user behavior to learn how to suggest the right content for the right people.

Oncotarget uses TrendMD to help our authors better circulate their research to targeted audiences around the world, cross-promote papers in adjacent fields, and increase paper citations. In a research study by Scientometrics, TrendMD was shown to outperform PubMed related citations by 272%. By joining this platform, Oncotarget publications are now incorporated into the TrendMD network—with 100 million total monthly users. Papers published by Oncotarget will now be recommended on hundreds of other leading peer-reviewed journals and scholarly websites.

“TrendMD is the world’s leading discovery platform, delivering over 1 billion recommendations to over 100 million unique users each month on 4,500 websites from over 300 scholarly publishers.” —Source: TrendMD.com

Since papers are recommended based on algorithms aiming to share specific content with readers who are most likely to be interested in the content, readership and engagement on TrendMD is very high. TrendMD statistics show that readers have the lowest bounce rate and view more content on TrendMD compared to Google AdWords, Google Scholar, Twitter, and PubPeer. Oncotarget is proud to offer this service for our authors and the scientific research community.

Click here to learn more about TrendMD.

YOU MAY ALSO LIKE: More Oncotarget Videos on LabTube

Oncotarget is a unique platform designed to house scientific studies in a journal format that is available for anyone to read—without a paywall making access more difficult. This means information that has the potential to benefit our societies from the inside out can be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact media@impactjournals.com.