In this new study, researchers unveiled a promising synergistic strategy for combating pancreatic cancer.
—
In the ever-evolving quest for effective cancer treatments, researchers are continuously exploring innovative combinatorial approaches that exploit the vulnerabilities of malignant cells. In a new study, researchers Benigno C. Valdez, Apostolia M. Tsimberidou, Bin Yuan, Yago Nieto, Mehmet A. Baysal, Abhijit Chakraborty, Clark R. Andersen, and Borje S. Andersson from The University of Texas MD Anderson Cancer Center unveiled a promising synergistic strategy for combating pancreatic cancer (a cancer known for its resistance to conventional therapies). On June 3, 2024, their research paper was published in Oncotarget’s Volume 15, entitled, “Synergistic cytotoxicity of histone deacetylase and poly-ADP ribose polymerase inhibitors and decitabine in pancreatic cancer cells: Implications for novel therapy.”
The Role of HDACs in Cancer
By harnessing the collective power of decitabine, histone deacetylase inhibitors (HDACis), and poly(ADP-ribose) polymerase inhibitors (PARPis), a multifaceted approach has demonstrated remarkable cytotoxic effects against pancreatic cancer cells, offering hope for improved treatment outcomes. Recognizing the pivotal role of HDACs in cancer pathogenesis, researchers have developed HDAC inhibitors, which induce gene expression, triggering cell differentiation, cell cycle arrest, and apoptosis in cancer cells. These inhibitors, including vorinostat, romidepsin, panobinostat, and belinostat, have received regulatory approval for treating hematologic malignancies. While HDACis have shown promise in preclinical studies, their clinical efficacy as monotherapy is limited. However, when combined with other anticancer drugs, enhanced anti-tumor activity has been observed, sparking interest in exploring synergistic combinations.
Histone acetylation, a critical epigenetic modification, governs gene expression and is catalyzed by histone acetyltransferases. This process involves the acetylation of positively charged lysine residues on the N-terminal tails of histones, reducing their interactions with negatively charged DNA and resulting in a relaxed chromatin structure that facilitates increased transcriptional activation and gene expression. Conversely, histone deacetylases (HDACs) remove acetyl groups, leading to a condensed, transcriptionally inactive chromatin state. Dysregulation of HDACs is implicated in the downregulation of tumor suppressor genes, contributing to the development and progression of various malignancies, including pancreatic cancer.
The DNA Repair Conundrum: Exploiting PARP Inhibitors
Another key player in the battle against pancreatic cancer is the poly(ADP-ribose) polymerase (PARP) enzyme family. These enzymes catalyze the process of poly(ADP-ribosyl)ation (PARylation), which is crucial for DNA repair mechanisms. By binding to DNA breaks, PARP enzymes self-ribosylate and recruit DNA repair proteins, facilitating the restoration of genomic integrity. Recognizing the pivotal role of PARP in DNA repair, researchers have developed potent PARP inhibitors (PARPis), such as olaparib and talazoparib. These agents have demonstrated remarkable efficacy in patients with metastatic pancreatic adenocarcinoma harboring BRCA1/2 germline mutations, which impair homologous recombination repair (HRR) pathways.
Decitabine, a nucleoside cytidine analogue, has emerged as a potent ally in the fight against pancreatic cancer. When phosphorylated, decitabine is incorporated into the growing DNA strand, inhibiting methylation and inducing DNA damage by inactivating and trapping DNA methyltransferase on the DNA. This process activates transcriptionally silenced DNA loci, potentially sensitizing cancer cells to other therapeutic interventions. Interestingly, decitabine has been associated with sensitivity in patients with KRAS-mutated pancreatic cancer, a prevalent genetic alteration in this malignancy.
The Synergistic Triad: Decitabine, HDACis, & PARPis Unite
In the current study, the researchers explored various combinations of HDACis (panobinostat and vorinostat), PARPis (talazoparib and olaparib), and decitabine in pancreatic cancer cell lines. The findings were nothing short of remarkable. The combination of HDACis and PARPis resulted in synergistic cytotoxicity across all tested cell lines, including those harboring wild-type BRCA1/2 (BxPC-3 and PL45) and a BRCA2 mutation (Capan-1).
The addition of decitabine further amplified the synergistic cytotoxicity observed with HDACis and PARPis, triggering increased apoptosis, as evidenced by elevated cleavage of caspase 3 and PARP1. Moreover, the triple-drug combinations induced heightened DNA damage, as demonstrated by increased phosphorylation of histone 2AX. The synergistic combinations disrupted various DNA repair pathways, as indicated by decreased levels of key proteins involved in the DNA damage response, such as ATM, BRCA1, and ATRX.
Remarkably, the triple-drug combinations altered the epigenetic regulation of gene expression by reducing the levels of subunits of the nucleosome remodeling and deacetylase (NuRD) complex, a crucial regulator of chromatin remodeling and deacetylation processes.
Mechanistic Insights & Clinical Implications
The synergistic cytotoxicity observed in this study can be attributed to the collective impact of HDACis, PARPis, and decitabine on various cellular processes. HDACis modulate the acetylation status of proteins, influencing genomic instability and potentially sensitizing cancer cells to DNA-damaging agents. Concurrently, PARPis inhibit protein PARylation, a critical process in DNA repair mechanisms. The addition of decitabine potentiates these effects by inducing DNA damage and activating transcriptionally silenced DNA loci. This multifaceted approach effectively disrupts DNA repair pathways, triggers apoptosis, and modulates epigenetic regulation, collectively amplifying cytotoxic effects against pancreatic cancer cells.
The findings of this study hold significant clinical implications for treating pancreatic cancer, a malignancy with a dismal prognosis and limited therapeutic options. By leveraging the synergistic interactions between HDACis, PARPis, and decitabine, this novel combinatorial approach has the potential to improve treatment outcomes and prolong survival for patients with this aggressive disease. The study provides a strong rationale for further exploration of these combinations in clinical trials, potentially leading to personalized therapeutic strategies tailored to individual patient profiles and tumor characteristics. However, additional preclinical investigations and rigorous clinical trials are necessary to validate these findings and address potential challenges, such as drug toxicities and pharmacodynamic interactions. By embracing a collaborative and multidisciplinary approach, the scientific community can transform these discoveries into tangible clinical benefits, advancing cancer care and offering hope to those battling this formidable disease.
Click here to read the full research paper in Oncotarget.
—
Oncotarget is an open-access, peer-reviewed journal that publishes primarily oncology-focused research papers. These papers are available to readers (at no cost and free of subscription barriers) in a continuous publishing format at Oncotarget.com.
Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative), and Dimensions (Digital Science).
Click here to subscribe to Oncotarget publication updates.
For media inquiries, please contact media@impactjournals.com.