Tagged: Cancer Research

Biomarkers May Predict Neoadjuvant Chemosensitivity in Bladder Cancer

In a new study, researchers aimed to identify and validate predictive biomarkers of response to neoadjuvant chemotherapy (NAC) in patients with muscle-invasive bladder cancer (MIBC).

Biomarkers May Predict Neoadjuvant Chemosensitivity in Bladder Cancer
Listen to an audio version of this article

Neoadjuvant chemotherapy (NAC) is a type of cancer treatment involving the administration of chemotherapy drugs before surgery. The goal of NAC is to shrink the tumor(s) in order to make it/them easier to remove during surgery and to decrease the chance of cancer recurrence after treatment. NAC is typically well tolerated by patients and has been shown to improve outcomes in patients with bladder cancer.

Predictive biomarkers are being increasingly used in oncology to identify patients who are likely to respond to chemotherapy. In the past, the decision to administer chemotherapy was based on tumor type and stage. However, it is now understood that there is considerable heterogeneity within these groups, and that not all patients will respond to the same treatment. Predictive biomarkers can help to overcome this challenge by identifying those patients who are most likely to benefit from chemotherapy.

There are a number of different types of predictive biomarkers, which can be divided into two broad categories: tumor biomarkers and host biomarkers. Tumor biomarkers are usually specific to the tumor type and can include markers of cell proliferation and DNA repair. Host biomarkers are usually found in the blood or other bodily fluids and can include markers of inflammation, immune function and metabolism. The use of predictive biomarkers has the potential to improve the efficacy of chemotherapy and reduce toxicity by avoiding its use in patients who are unlikely to benefit.

The Study

In a new study, researchers Neal Murphy, Andrew J. Shih, Paras Shah, Oksana Yaskiv, Houman Khalili, Anthony Liew, Annette T. Lee, and Xin-Hua Zhu from Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health Cancer Institute, Feinstein Institutes for Medical Research, and Mayo Clinic aimed to develop and validate a predictive biomarker panel for response to NAC in patients with muscle-invasive bladder cancer (MIBC). Their research paper was published on November 2, 2022, in Oncotarget’s Volume 13, entitled, “Predictive molecular biomarkers for determining neoadjuvant chemosensitivity in muscle invasive bladder cancer.”

“The NAC non-responders suffer from unnecessary adverse effects and a delay in time to cystectomy leading to worse overall survival [9, 10]. Subsequently, there remains a critical need to understand the molecular biology behind NAC responsiveness, in order to better tailor individual NAC therapy.”

The purpose of this research was to “develop a molecular signature that can identify MIBC NAC responders (R) and non-responders (NR) using a cohort of known NAC response phenotypes, and better understand differences in molecular pathways and subtype classifications between NAC R and NR.” Researchers identified a total of 26 patients with known NAC response for inclusion in this study. These patients were assigned at random to either the discovery or validation cohort. The discovery cohort consisted of seven NAC responders and 11 non-responders. The validation cohort consisted of three responders and five non-responders.

Transurethral resection of bladder tumor (TURBT) specimens from the Northwell Health pathology department were received as formalin-fixed, paraffin-embedded (FFPE) tissue blocks. Pathologic response was determined at the time of cystectomy. Messenger RNA (mRNA) and microRNA (miRNA) from the FFPE blocks were sequenced using RNAseq and qPCR, respectively.

“To our knowledge, our study is the first to use combined differential mRNA and miRNA expression in MIBC to identify a NAC response signature.”

The Results

“We report significant gene sets associated with NAC response phenotype, as well as three multigene and miRNA signatures generated by CCA that can be used to potentially classify NAC response.”

In the discovery cohort, the researchers found that 2309 genes were differentially expressed between the NAC responders and non-responders. In the validation cohort, 602 genes and 13 miRNA were differentially expressed. Canonical correlation (CC) analysis found that three CCs (CC13: nucleoside triphosphate metabolic process; CC16: cell cycle and cellular response to DNA damage; and CC17: DNA packaging complex) were differentiated in the discovery and validation datasets. As far as MIBC subtypes, the MD Anderson p53-like subtype, CIT MC4 subtype and Consensus Class stroma-rich subtype had the strongest correlation with a non-responder phenotype. There were no subtypes that had strong correlations with the responder phenotype.

“In conclusion, our results identify molecular signatures that can be used to differentiate MIBC NAC responders versus non-responders. We have presented the salient molecular pathways and relevant genes, including mitochondrial response gene expression (MRPS12, MRPS34, MRPS28, MRPS14, and MRPS2), DNA replication initiation, and DNA unwinding and DNA damage (MCM2-3, MCM5-6 and XAP , ELK4, and FOXA3) that can be further analyzed to better understand NAC response. The above mentioned genes derived from their respective three pathways may be selected as part of a NAC response biomarker panel. In addition, we have highlighted the utility of molecular subtyping in relation to NAC response. If validated in a larger cohort, these findings may help deliver chemotherapy to those patients most likely to respond.”

Conclusion

Neoadjuvant chemotherapy is a promising treatment option for muscle-invasive bladder cancer patients, however, there is a class of patients who do not respond to chemotherapy. The results of this study implicate several different types of biomarkers that may be associated with chemosensitivity in MIBC patients. Further research is needed to validate these findings. Ultimately, if validated, these biomarkers could help to spare non-responders from side effects associated with ineffective and unnecessary chemotherapy.

“Our results identify molecular signatures that can be used to differentiate MIBC NAC R versus NR, salient molecular pathway differences, and highlight the utility of molecular subtyping in relation to NAC response.”

Click here to read the full research paper published by Oncotarget

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

Synergy of HDACi, PARPi and Chemotherapeutics Against Blood Cancer

Researchers investigated the efficacy of HDAC inhibitors in combination with PARP inhibitors and chemotherapeutic drugs in multiple blood cancer cell lines.

Synergy of HDACi, PARPi and Chemotherapeutics Against Blood Cancer
Listen to an audio version of this article

Chromatin constitutes chromosomes in eukaryotic cells and comprises DNA and proteins. Chromosomes produce proteins and enzymes that are essential for cellular function and maintenance, including DNA repair. A critical process for DNA repair is poly(ADP-ribosyl)ation, or PARylation.

PARylation is triggered by poly(ADP ribose) polymerase (PARP) enzymes. When DNA becomes damaged, PARP enzymes bind to the damaged location in the cell. In cancer cells, however, this natural process can be counterproductive in respect to cancer treatment. PARylation can produce DNA repair mechanisms in cancer cells that can lead to cell death evasion and even drug resistance. Inhibiting PARylation may be a viable therapeutic strategy for cancer treatment.

HDAC Inhibitors

Histones, the main proteins that constitute chromatin, undergo post-translational modifications that regulate gene expression. Histone acetylation is an important epigenetic process that affects gene expression by relaxing the chromatin structure, making chromatin remodeling more feasible. Histone deacetylases (HDACs) are enzymes that can have the opposite effect. Histone deacetylation makes the chromatin more compact and difficult to remodel. The overexpression of HDAC has also been associated with tumorigenesis. Histone deacetylase inhibitors (HDACi) are a class of therapeutics that have shown promise in the treatment of hematologic malignancies (blood cancer) and solid tumors.

“Overexpression of HDACs has been associated with tumorigenesis by down-regulation of tumor suppressor genes [3, 4]; hence, HDAC inhibitors (HDACi) including vorinostat (SAHA), romidepsin (Rom), panobinostat (Pano) and belinostat have been approved by the United States Food and Drug Administration for the treatment of hematologic and other malignancies [5]. These inhibitors restore appropriate gene expression, resulting in induction of cell differentiation, cell cycle arrest and apoptosis [6].”

The Study

In a new study, researchers Benigno C. Valdez, Yago Nieto, Bin Yuan, David Murray, and Borje S. Andersson from the Department of Stem Cell Transplantation and Cellular Therapy at the University of Texas MD Anderson Cancer Center and the Cross Cancer Institute’s Department of Experimental Oncology at the University of Alberta investigate the efficacy of HDACi in combination with PARP inhibitors (PARPi) and chemotherapeutic drugs to treat hematologic cancer. On October 14, 2022, their research paper was published in Volume 13 of Oncotarget, entitled, “HDAC inhibitors suppress protein poly(ADP-ribosyl)ation and DNA repair protein levels and phosphorylation status in hematologic cancer cells: implications for their use in combination with PARP inhibitors and chemotherapeutic drugs.”

“Despite their preclinical efficacy, HDACi do not seem to be clinically highly effective as monotherapy, and potentially more effective anti-tumor activity is observed when they are combined with other anti-cancer drugs [79].”

Studies on the interactions of HDACi with PARPi in cancers of the blood are limited, especially when combined with chemotherapeutic agents. The researchers used a panel of hematologic cancer cell lines (acute myeloid leukemia, T-cell acute lymphoblastic leukemia, chronic myeloid leukemia, and multiple myeloma) and patient-derived cell samples to study the effect of HDACi (including SAHA (Vorinostat), panobinostat (Pano), romidepsin (Rom) and trichostatin A (TSA)) on PARylation. In addition, the team looked at the efficacy of HDACi combined with PARPi, including Olaparib (Ola) and niraparib (Npb), and with chemotherapeutic agents gemcitabine (Gem), busulfan (Bu) and melphalan (Mel).

Results

The researchers found that hematologic cancer cell lines and patient-derived cell samples exposed to various HDACi resulted in a significant caspase-independent inhibition of protein PARylation. HDACi-mediated inhibition of protein PARylation was mainly catalyzed by PARP1. These findings suggest that HDACi could potentially be used in combination with PARP inhibitors and chemotherapeutic drugs to treat blood cancers.

“Our results indicate that the anti-tumor efficacy of HDACi is partly due to down-regulation of PARylation, which negatively affects the status of DNA repair proteins. This repair inhibition, combined with the high levels of oxidative and DNA replication stress characteristic of cancer cells, could have conferred these hematologic cancer cells not only with a high sensitivity to HDACi but also with a heightened dependence on PARP and therefore with extreme sensitivity to combined HDACi/PARPi treatment and, by extension, to their combination with conventional DNA-damaging chemotherapeutic agents. The observed synergism of these drugs could have a major significance in improving treatment of these cancers.”

Conclusion

HDACi drugs can inhibit PARylation. The combination of HDACi-mediated inhibition of PARylation was complemented by PARPi and chemotherapeutic agents in multiple blood cancer cell lines. The efficacy of this combined treatment was superior to that of any single agent, supporting the further clinical development of HDACi in cancer therapy. These findings could potentially be used to improve the treatment of hematologic cancers.

“In conclusion, our results provide a molecular explanation for the HDACi-mediated inhibition of DNA repair in hematologic cancer cells and support the combinatorial application of HDACi, PARPi and chemotherapeutic agents for the treatment of hematologic malignancies.”

Click here to read the full research paper published by Oncotarget

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

CRISPR Screens Identify Novel Targets for Personalized Cancer Therapy

In this trending new study, researchers used CRISPR-based genome-wide screens to identify genetic determinants of PARP10-mediated cellular survival.

CRISPR Screens Identify Novel Targets for Personalized Cancer Therapy
Listen to an audio version of this article

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Genetic interactions involved in the survival of cancer cells are potential therapeutic targets in personalized cancer therapy. “Synthetic lethal” is a type of genetic interaction where the knockout of one gene can cause cell death but only in the presence of another dependent gene. Cancer researchers view synthetic lethality screening as a powerful tool in precision medicine.

“Identifying genetic susceptibilities based on PARP10 expression levels is thus potentially relevant for finding new targets for precision oncology.”

Poly-ADP-ribose polymerase 10, or PARP10, is a nuclear protein that is overexpressed in multiple cancers. Genetic susceptibilities based on PARP10 expression levels in an individual may be potential targets for personalized cancer therapy. In a new study, researchers Jude B. Khatib, Emily M. Schleicher, Lindsey M. Jackson, Ashna Dhoonmoon, George-Lucian Moldovan, and Claudia M. Nicolae, from the Department of Biochemistry and Molecular Biology at Penn State College of Medicine, used CRISPR-based, genome-wide genetic screens to identify potential synthetic lethality interactions with PARP10-overexpressing and -knockout cancer cells. On September 28, 2022, their research paper was published in Oncotarget and entitled, “Complementary CRISPR genome-wide genetic screens in PARP10-knockout and overexpressing cells identify synthetic interactions for PARP10-mediated cellular survival.”

“Here, we employed complementary CRISPR loss-of-function genome-wide screening to identify genes required for proliferation of PARP10-overexpressing and PARP10-knockout cells.”

The Study

To identify potential synthetic lethal targets, the researchers conducted a CRISPR-based, genome-wide genetic screen of both PARP10-overexpressing and PARP10-knockout tumorigenic and non-tumorigenic breast cells. The screen looked for genes that were required for cell proliferation in the presence of PARP10 overexpression or PARP10 knockout.

“Here, we performed a series of CRISPR genome-wide loss-of-function screens in isogenic control and PARP10-overexpressing or PARP10-knockout cell lines, to identify genetic determinants of PARP10-mediated cellular survival.”

In the PARP10 overexpressing cells, the top results from their CRISPR screen were validated with biological pathway enrichment analyses, using both KEGG and Gene Ontology databases. A functional interaction between ATM and PARP10 expression was found. ATM promoted cell proliferation in PARP10-overexpressing cells.

In the genome-wide CRISPR knockout screens, genes required for the viability of PARP10-knockout cells were identified. In the PARP10 knockout cells, the top results from their CRISPR screen were validated with biological pathway enrichment analyses, using both KEGG and Gene Ontology databases. They identified the CDK2-Cyclin E1 complex as a genetic determinant for the proliferation of PARP10-knockout cells.

“Our work identifies a network of functionally relevant PARP10 synthetic interactions, and reveals a set of factors which can potentially be targeted in personalized cancer therapy.”

Conclusion

The researchers identified several genes that were differentially required for cell proliferation in the presence of PARP10 overexpression or knockout. Some of these genes have been previously implicated in cancer, while others were novel candidate cancer targets. The identification of these potential synthetic lethal interactions provides new insights into the role of PARP10 in cancer and may be useful for precision oncology. This study highlights the importance of using complementary CRISPR-based screens to identify potential cancer targets.

“We found that DNA repair factors, including ATM, a master regulator of the DNA damage checkpoint response, are specifically promoting the proliferation of PARP10-overexpressing cells. Moreover, we identified a role for PARP10 in regulating ATM recruitment to stressed replication forks. Finally, we found that the CDK2-cyclin E1 complex is specifically required for the proliferation of PARP10-deficient cells. Our work reveals novel PARP10 genetic interactions of functional relevance and identifies a set of factors which can potentially be targeted in personalized cancer therapy.”

Click here to read the full research paper published by Oncotarget

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

How High Altitudes Influence HIF-1, Gastric Cancer & Patient Survival

In a new study, researchers evaluated the high altitude in Ecuador and how it may influence HIF-1 expression and the survival of Ecuadorian patients with gastric cancer.

El Panecillo hill in Quito, Ecuador
El Panecillo hill in Quito, Ecuador
Listen to an audio version of this article

Altitude is considered any elevation above sea level. Higher altitude environments are known to influence various physiological processes in the human body, including those related to hypoxia-inducing factors (HIF), vitamin D, ultraviolet radiation, oxygen toxicity, and changes in pH. Researchers have suggested that altitude may even affect the development and progression of some diseases, including stomach/gastric cancer.

“Gastric cancer is the third leading cause of death in the world and is estimated to cause almost 15 million deaths by 2035 [2].”

Gastric Cancer & Altitude

The primary subtype of gastric cancer is gastric adenocarcinoma (GA). GA develops in the mucus-secreting cells that line the stomach (gastric epithelium). Higher incidence rates of GA have been found among populations living at high altitudes. High altitudes are notorious for low air pressure and decreased oxygen saturation levels. Decreases in oxygen (hypoxia) can activate the transcriptional regulator hypoxia-inducing factor-1 (HIF-1). HIF-1 is known to be upregulated in a variety of human cancers, including GA. The role of HIF-1 in GA pathogenesis and prognosis has not yet been fully understood.

“Gastric adenocarcinoma (GA) has a high incidence in Ecuador, in men it ranks third and in women it ranks fifth.”

There is a higher incidence of GA among people living in Ecuador. This is a country that straddles the equator yet, the altitude in Ecuador varies significantly across the country. For example, the altitude is 2,850 meters in the capital city of Quito (the second-highest capital city in the world). In Guayaquil (a coastal city in Ecuador) the altitude is only nine meters. These facts make Ecuador an optimal location for studying the effects of altitude on gastric adenocarcinoma.

“Ecuador has a varied altitude diversity and there is a differential incidence of cancer between populations living in the Andean or mountainous region when compared to coastal populations or living at low altitude.”

The Study

In a new retrospective study, researchers Edwin Cevallos Barrera, Edson Zangiacomi Martinez, Mariangela Ottoboni Brunaldi, Eduardo Antonio Donadi, Ajith Kumar Sankarankutty, Rafael Kemp, and José Sebastiao dos Santos from Universidad Central del Ecuador and University of São Paulo evaluated the high altitude in Ecuador and how it may influence HIF-1 expression and the survival of Ecuadorian patients with GA. Their research paper was published on September 14, 2022, in Oncotarget’s Volume 13, entitled, “Influence of high altitude on the expression of HIF-1 and on the prognosis of Ecuadorian patients with gastric adenocarcinoma.”

A total of 229 Ecuadorians were assessed in this study. The researchers included 155 cases of GA; 99 of the individuals with GA lived in the mountainous regions of Quito and Ambato, and 56 individuals lived in the coastal region of Guayaquil. (Controls accounted for 74 people; 25 from the coast and 49 from the mountains.) The team followed-up with all individuals in this study from 2005 to 2018 and collected blood and tissue samples. They performed immunohistochemistry and other analyses to evaluate HER2 and HIF-1 expression.

“Analyses were performed using Fisher’s exact and Breslow-Day tests for homogeneity and Kaplan-Meier curves and restricted median survival time ΔRMST.”

Results & Conclusion

After 10 years, median survival was significantly higher among GA patients living along the coast. In the GA samples, HIF-1 was observed in 66.1% of the coastal patients and in 43.4% of the mountainous patients. Positive HIF-1 expression was associated with improved survival among GA patients living in the mountains. Interestingly, in the control group (without GA), HIF-1 expression was observed in 95.9% of the mountainous samples and only 32% of the coastal samples. Their results showed that 89% of the control population exhibited gastritis.

The researchers were forthcoming about the limitations of this study. Differences in quantities and the male-to-female ratios within the GA and control coastal and mountainous groups may have influenced data. Despite these limitations, the researchers observed that coastal GA patients and individuals who expressed HIF-1 had a better prognosis. However, HIF-1 expression was only associated with better survival in the mountain region. These findings suggest that HIF-1 expression may be a protective factor against GA progression in people living at high altitudes.

“Concluding, this study suggests that HIF-1 has a differential expression pattern in gastric samples according to geographical features, being highly expressed even in non-carcinomatous cells (gastritis and normal mucosa) from individuals living in regions of high altitude, indicating that the gastric HIF-1 expression may be an adaptation of the individual to high altitudes.”

Click here to read the full research paper published by Oncotarget

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

Protein-Based Risk Model Predicts Esophageal Cancer Recurrence

Researchers developed a multi-protein expression-based risk model to predict recurrence-free survival for ESCC patients.

Listen to an audio version of this article

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Esophageal cancer is the sixth most common cause of death from cancer worldwide. The two main types of esophageal cancer are adenocarcinoma and esophageal squamous cell carcinoma (ESCC). ESCC arises from the cells lining the esophagus, and it is most common in areas of the world where tobacco use and alcohol consumption are high.

“Biomarkers to predict the risk of disease recurrence in Esophageal squamous cell carcinoma (ESCC) patients are urgently needed to improve treatment.”

Researchers Raghibul Hasan, Gunjan Srivastava, Akram Alyass, Rinu Sharma, Anoop Saraya, Tushar K. Chattopadhyay, Siddartha DattaGupta, Paul G. Walfish, Shyam S. Chauhan, and Ranju Ralhan from All India Institute of Medical Sciences, Mount Sinai Hospital Toronto, McMaster University, Guru Gobind Singh Indraprastha University, and the University of Toronto conducted a new study on the protein expression-based risk model they developed to predict recurrence-free survival for ESCC patients. On September 14, 2022, their research paper was published in Oncotarget’s Volume 13, and entitled, “Prediction of recurrence free survival for esophageal cancer patients using a protein signature based risk model.”

The Study

“Our study is important because: (i) it is based on changes in expression levels of the biomarker proteins in different subcellular compartments and is not limited to alterations in the overall protein expression levels; (ii) investigates the comprehensive clinical relevance of subcellular alterations in expression of multiple key components of Wnt pathway in the same ESCC patients’ cohort; (iii) correlates these findings with disease outcome and (iv) develops a Biomarker risk score for defining the risk of recurrence of ESCCs.”

Figure 1: Immunohistochemical analysis of Wnt protein in esophageal tissues.
Figure 1: Immunohistochemical analysis of Wnt protein in esophageal tissues.

The researchers aimed to develop and validate a panel of biomarkers with the potential to predict tumor recurrence in patients with ESCC, as well as to generate a risk model for clinical decision-making. This study enrolled 80 ESCC cases, 61 esophageal dysplastic tissues and 47 normal tissues. A multi-protein signature was generated from microarray data using the Cox proportional hazard model which was then internally validated on an independent set of samples by immunohistochemistry. The researchers demonstrated that a panel of four biomarkers (cytoplasmic β-catenin, nuclear c-Myc, nuclear DVL and membrane α-catenin) constituted the prognostic molecular signature for ESCC patients. They found that this protein signature could predict disease recurrence in patients with ESCC.

“Our panel of biomarkers predicted disease recurrence more effectively as compared to individual biomarkers analyzed in this study and demonstrated the strong predictive power of this panel of biomarkers for ESCC patients.”

Conclusion

The research team found that a panel of four biomarkers could predict disease recurrence in patients with ESCC. Furthermore, they showed that this protein signature could be used to stratify patients into high- and low-risk groups. This study provides valuable insights into the role of these proteins in the development and progression of esophageal cancer. The development of this risk model may help to tailor treatment and follow-up strategies for patients with ESCC.

“In conclusion, integrated analysis of expression of the panel of 4 proteins in ESCC patients has allowed us to validate the robustness of our biomarker panel in stratification of patients at high or low risk of disease recurrence. This risk classifier has the potential to identify the high risk patients for more rigorous personalized treatment and the low risk patients may be spared from the harmful side effects of toxic therapy as well reduce the burden on health care providers. The findings of our study set the foundations for external validation of the prognostic signature as a step forward in translation of this panel of protein markers for ESCC patients and establish their clinical relevance for larger worldwide application in future studies.”

Click here to read the full research paper published by Oncotarget

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

Epigenetics and Immunotherapy Combined Fights Rare Lymphoma

In a new Oncotarget study, researchers assessed an epigenetic and immunotherapy treatment regimen among patients with blastic mantle cell lymphoma (bMCL).

Mantle cell lymphoma
Mantle cell lymphoma
Listen to an audio version of this article

Mantle cell lymphoma (MCL) is a type of non-Hodgkin’s lymphoma (NHL) that is aggressive, difficult to treat and typically affects older adults. Recurrence and mortality rates among patients with MCL have remained high, despite recent therapeutic advances. Blastic mantle cell lymphoma (bMCL) is a rare subtype of MCL associated with a worse disease trajectory.

“Despite recent advances, MCL is incurable except with allogeneic stem cell transplant. Blastic mantle cell lymphoma (bMCL) is a rarer subtype of cMCL associated with an aggressive clinical course and poor treatment response, frequent relapse and poor outcomes.”

In previous studies, researchers reported that a combination of epigenetic and immunotherapy treatments may have synergistic activity and offer better outcomes in patients with MCL. In the current study, Francis R. LeBlanc, Zainul S. Hasanali, August Stuart, Sara Shimko, Kamal Sharma, Violetta V. Leshchenko, Samir Parekh, Haiqing Fu, Ya Zhang, Melvenia M. Martin, Mark Kester, Todd Fox, Jiangang Liao, Thomas P. Loughran, Juanita Evans, Jeffrey J. Pu, Stephen E. Spurgeon, Mirit I. Aladjem, and Elliot M. Epner from Pennsylvania State University College of MedicinePenn State Hershey Cancer InstituteWinter Haven Hospital Cassidy Cancer CenterIcahn School of Medicine at Mount SinaiNational Cancer InstituteUniversity of VirginiaUVA Cancer CenterUniversity of Arizona College of MedicineOregon Health and Science University, and Beverly Hills Cancer Center used samples from a previous trial to perform correlative studies focused on clinical results in patients with blastic MCL. On August 16, 2022, their research paper was published in Volume 13 of Oncotarget, entitled, “Combined epigenetic and immunotherapy for blastic and classical mantle cell lymphoma.”

Epigenetic and Immunotherapy

Epigenetic therapy includes a range of drugs that can target epigenetic mechanisms, including DNA methylation and posttranslational modifications of histones. For example, vorinostat (SAHA; a histone deacetylase inhibitor) and cladribine (chemotherapy that also inhibits DNA methylation) are epigenetic agents. Rituximab, a maintenance immunotherapeutic agent, is a CD20-directed monoclonal antibody. These three treatments combined encompass a novel potential epigenetic and immunotherapy treatment regimen (SCR) for mantle cell lymphoma (MCL).

“Relapsed and [treatment] naïve MCL patients were treated with vorinostat (SAHA), cladribine and rituximab (SCR) regimen and followed for OS [overall survival], progression free survival (PFS) and with correlative basic science studies to investigate potential mechanisms of action of this epigenetic/immunotherapy combination.”

The Study

Since blastic MCL patients are rare, only 13 bMCL (four relapsed, nine previously untreated) patients treated with the SCR regimen were assessed in the prospective part of this study. All patients were male and Caucasian, and the median age at diagnosis was 62 years old. The patients were treated until they achieved remission, met the criteria for removal from the study, withdrew from the study, or passed away. Four patients were changed from rituximab to ofatumumab (a potent fully-human anti-CD20 antibody) due to rituximab intolerance (allergies, reactions) or lack of efficacy.

“Of 13 bMCL patients, all patients responded to therapy, with 12 patients meeting criteria for remission (CR, n = 6; PR, n = 6). Of those achieving CR, 5 remain in CR more than 5 years after diagnosis.”

Results

After a median of 4.8 cycles of therapy, 12 patients achieved a complete response (CR), and one patient maintained stable disease (SD). The patients reported an increased overall survival greater than 40 months, and several patients maintained durable remissions without relapse for longer than five years. These results are remarkably superior to current treatment regimens with conventional chemotherapy, which range from 14.5-24 months among bMCL patients.

“The median OS of 43.4 months and PFS of 17.3 months for MCL patients with blastic disease treated with SCR therapy is one of the most important outcomes in this study.”

Another important finding was that the G/A870 CCND1 polymorphism was a strong predictor of blastic MCL, nuclear localization of cyclinD1 and response to SCR therapy. The team identified two distinct mechanisms of resistance to SCR therapy. The researchers reported that the loss of CD20 expression and evading treatment by seeking sanctuary in the central nervous system were two major resistance mechanisms to SCR therapy. 

“These data indicate that administration of epigenetic agents improves efficacy of anti-CD20 immunotherapies.”

Conclusion

Although the study sample was relatively small, the researchers’ results are promising. The SCR regimen was demonstrated to be an effective epigenetic and immunotherapy treatment for mantle cell lymphoma, with long-term remissions and improved overall survival in bMCL patients. Researchers revealed important insights into the mechanisms of action of SCR and potential resistance mechanisms. This study also highlights the potential for future research exploring the efficacy of SCR in other cancers, along with other predictive biomarkers of response.

“This approach is promising in the treatment of MCL and potentially other previously treatment refractory cancers.”

Click here to read the full research paper published by Oncotarget

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

How Heartburn Can Turn Into Esophageal Cancer, and a Possible Biomarker

In a recent Oncotarget paper, researchers investigated telomere shortening in patients with Barrett’s esophagus as a potential biomarker of high risk for esophageal cancer.

Acid reflux / heartburn

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Smokers are significantly more likely than nonsmokers to have acid reflux. In many Western countries, a popular diet—known for its convenience, availability and, frankly, its lack of nutritional value—is also known to cause acid reflux. Some of the affordable foods and beverages easily accessible to Western consumers include fried food, fast foods, pizza, potato chips (and other processed snacks), high-fat meats (bacon, sausage), cheese, alcohol, soda, energy drinks, and etcetera. Unfortunately, this indulgent type of diet is accompanied by consequences beyond oily skin and an expanding waistband.

Barrett’s Esophagus

Chronic acid reflux can lead to gastroesophageal reflux disease. Gastroesophageal reflux disease can lead to Barrett’s esophagus (BE). BE is a premalignant condition in which the lining of the esophagus becomes damaged by acid reflux. BE can lead to the onset of a type of cancer called esophageal adenocarcinoma (EAC). Over the past few decades, statistics have reported that the incidence of EAC in Western populations is increasing.

“Esophageal adenocarcinoma (EAC) is on the rise in western countries with increased incidence and high mortality [12].”

Since the popularity of smoking and a heartburn-inducing diet is likely to continue in the West, the early detection of EAC is critical for improving patient outcomes. If a biomarker could indicate a BE patient’s present risk of EAC, early EAC treatment could curb incidence and mortality rates. However, such a biomarker has yet to be confirmed. On February 14, 2022, researchers from Technische Universität MünchenColumbia University Irving Medical Center and Universitätsklinikum Freiburg published the research paper, “Telomere shortening accelerates tumor initiation in the L2-IL1B mouse model of Barrett esophagus and emerges as a possible biomarker,” in Oncotarget.

“Here we aimed to provide functional evidence for the hypothesis that telomere shortening can directly contribute to tumor initiation, and thus serve as a potential biomarker for BE cancer risk stratification [2224].”

Telomere Shortening and Tumor Initiation

“Shortened telomeres is a common sight in epithelial cancers and has also been described in EAC and its precancerous lesions.”

In this study, researchers investigated the impact of shortened telomeres in a mouse model for Barrett’s esophagus (L2-IL1B). The L2-IL1B mouse model is characterized by inflammation that leads to a Barrett-like metaplasia. The team knocked out the mTERC gene (mTERC−/−), which is the catalytic subunit of telomerase in the L2-IL1B mice. 

After mTERC knockout, the researchers found that the telomeres shortened and the mice displayed signs of DNA damage. The tumor area along the squamocolumnar junction (SCJ) was increased in the second generation of these mice, and histopathological dysplasia (abnormal changes) was also increased. In vitro studies indicated that organoid formation capacity increased in BE tissue from the L2-IL1B mTERC−/− G2 mice.

“In summary, we here demonstrated a functional role of telomere shortening, a well observed property of BE, in promoting early onset esophageal tumor initiation in the L2-IL1B mouse model.”

Additional results of the study found that the telomeres in human BE epithelial cells lining the stomach with or without dysplasia were shorter than in gastric cardia tissue (the junction between the lower esophagus and the stomach). The study also found that differentiated cells that make mucus (goblet cells, which help protect the stomach lining) had longer telomeres than cells actively dividing (and more likely to become cancerous) in the columnar lined BE epithelium. 

“Moreover, besides the importance during early carcinogenesis in the mouse model, shortening of telomeres was specifically decreased in dysplastic columnar-type tissue rather than in differentiated goblet cells in human BE- and LGD tissue samples.”

Conclusion

“Here, we demonstrate that telomere dysfunction aggravates the histological phenotype, extends the tumor area in the inflammation-based L2-IL1B mouse model for BE and acts as a driver for early dysplasia development.”

In summary, these findings suggest that shortened telomeres may play a role in tumor development in a mouse model of BE and are associated with proliferating columnar epithelium in human BE. The study suggests that shortened telomeres should be evaluated further as a possible biomarker for predicting EAC cancer risk in people with BE.

“It is plausible that with our measurements we could emulate this with shortened telomeres being at higher risk of genome instability and lowered cell-to-cell variability marking clonal expansion. However, larger studies are needed to test these hypotheses.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

New Tool Uses NF-κB Activity to Classify HPV+ Head and Neck Cancer

Researchers developed a new tool aimed at better classifying HPV+ HNSCC patients with good or poor prognosis in an effort to personalize treatment and improve patient outcomes.

New Tool Uses NF-κB Activity to Classify HPV+ Head and Neck Cancer
New Tool Uses NF-κB Activity to Classify HPV+ Head and Neck Cancer

Listen to an audio version of this article

Over the last 10 years in the United States, the human papillomavirus (HPV) has caused more head and neck squamous cell carcinomas (HNSCC) than uterine cervical cancers. Primarily caused either by exposure to HPV or to ethanol or tobacco, HNSCC is a disease that impairs fundamental tissues involved in respiration, speech and digestion. HPV-positive and -negative HNSCC have contrasting clinical, epidemiological and histological features. 

“A major discovery in the recent past is that HPV associated HNSCC have improved survival compared to tobacco associated tumors.”

Therefore, treating HNSCC in accordance with HPV status is crucial for avoiding unnecessarily harsh therapeutic side effects in HPV+ HNSCC patients. However, while oncologic outcomes among patients with HPV+ HNSCC are generally favorable, approximately 30% experience a more aggressive disease course and recurrence. Coupled with increasing incidence worldwide, this highlights a growing need for the development of effective clinical stratification tools to accurately identify HPV+ HNSCC patients who have a good or poor prognosis. 

In a new study, researchers—from Columbia UniversityUniversity of Illinois Cancer CenterUniversity of North Carolina at Chapel Hill, and Yale School of Medicine—developed a new tool aimed at better classifying HPV+ HNSCC patients with good or poor prognosis in an effort to personalize treatment and improve patient outcomes. Their trending research paper was published in Oncotarget on May 24, 2022, and entitled, “NF-κB over-activation portends improved outcomes in HPV-associated head and neck cancer.”

“To improve on genomic classification, we designed this study to provide a foundation for development of NF-κB related, RNA based classification strategies to better identify HPV+ HNSCC patients with good or poor prognosis that could potentially aid in future efforts towards treatment personalization.”

The Study

The researchers from this study previously found that TRAF3 and CYLD genes are negative regulators of a family of inducible transcription factors involved in inflammation, called nuclear factor kappa B or NF-κB. The team found that somatic mutations or deletions in either TRAF3 or CYLD (not commonly found in uterine cervical cancer or HPV-negative HNSCC) lead to increased NF-κB pathway activation in HPV+ HNSCC. NF-κB overactivity may lead to cancer cell growth and survival. Alterations in these NF-κB related genes may be potential therapeutic targets in HPV+ HNSCC, and their expression may be capable of predicting treatment outcomes.

“[…] we hypothesized that tumor groups based on NF-κB related gene expression may correlate with treatment outcome, considering that tumors lacking defects in TRAF3 and CYLD may have unrecognized mechanisms driving constitutive NF-κB activation.”

In the current study, the researchers developed an RNA-based NF-κB classification tool called the NF-κB Activity Classifier, or NAC. They used bioinformatics and machine learning techniques, expression-based classification, principal component (PC) analysis, gene set enrichment analysis, and weighted gene correlation network analysis (WGCNA) to verify that the NAC is indeed capable of identifying tumors with high or low NF-κB activity and tumors with good and poor survival. 

“This report validates and expands on our findings that significant expression changes related to NF-κB activity occur in the subset of HPV+ HNSCC tumors marked by TRAF3 or CYLD mutations. We are planning future studies investigating the importance of ‘long-tail’ mutations in the NF-κB pathway which might further illuminate the origins of NF-κB dysregulation in HPV+ HNSCC.”

Conclusion

“Here we present data that these subclasses may also be identified by direct assessment of NF-κB activity; as demonstrated by gene expression differences highlighted by the NF-κB Activity Classifier.”

In summary, the researchers identified genomic differences within subclasses of HPV+ HNSCC. They found that defects in TRAF3 and CYLD genes and NF-κB activity were correlated with survival. Therefore, the NF-κB Activity Classifier could be a useful guide for clinicians who make therapeutic decisions for patients with HPV+ HNSCC.

“Future applications of the NF-κB Activity Classifier may be to identify HPV+ HNSCC patients with better or worse survival with implications for treatment strategies.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

Trending With Impact: Dual Requirement in Stem Cell Leukemia/Lymphoma

For the first time, researchers revealed the protein interactome, phospho-proteome and total proteome for the oncogenic fusion protein BCR-FGFR1.

Figure 6: Signaling pathways activated by BCR-FGFR1.
Figure 6: Signaling pathways activated by BCR-FGFR1.

The Trending With Impact series highlights Oncotarget publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Oncotarget.com.

Listen to an audio version of this article

Chromosomes are found in the nucleus of cells and consist of proteins and tightly coiled strands of DNA. During cell division, chromosomal translocations can occur while the chromosomes are being copied. This type of mutation can mean that an entire chromosome has moved to another location, or that a chromosome has broken, usually into two pieces, and moved to another site. Some translocations are harmless, but others can lead to aberrant cell proliferation and cancer.

“Over the last half century, chromosomal translocations encoding functional oncogenic proteins have been identified as drivers of multiple cancers, and account for 20% of all malignant neoplasms [1, 2].”

For example, the t(8;22)(p11;q11) chromosomal translocation leads to the initiation of an oncogenic fusion protein called the Breakpoint Cluster Region Fibroblast Growth Factor Receptor 1 (BCR-FGFR1). BCR-FGFR1 is a single driver of 8p11 myeloproliferative syndrome, which is also known as stem cell leukemia/lymphoma (SCLL).

“Stem cell leukemia/lymphoma (SCLL) exhibits distinct clinical and pathological features characterized by chromosomal translocations involving the FGFR1 gene at chromosome 8p11.”

In a trending new study, researchers from the University of California San Diego and Sanford Burnham Prebys Medical Discovery Institute examined mutations in PLCγ1 and Grb2 binding sites individually and when combined together in a double mutant within BCR-FGFR1. On May 11, 2022, the research paper was published in Oncotarget and entitled, “Proteomic analysis reveals dual requirement for Grb2 and PLCγ1 interactions for BCR-FGFR1-Driven 8p11 cell proliferation.”

The Study

In this study, the researchers used quantitative proteomic analyses to identify the crucial protein-to-protein interactions that may be necessary to activate BCR-FGFR1. The team used NIH3T3, HEK293T and 32D cells to assay five types of mutations: wild type BCR-FGFR1, a kinase-dead variant of BCR-FGFR1, a derivative of BCR-FGFR1 that contained a single mutation abolishing the Grb2 interaction site, a derivative of BCR-FGFR1 that contained a single mutation abolishing the PLCγ1 interaction site, and a double mutation that abolished both interaction sites (BCR(Y177F)-FGFR1(Y766F)).

“These data demonstrate that inhibition of either signaling pathway alone fails to inhibit hematopoietic cell proliferation, and demonstrate a dual requirement for Grb2 and PLCγ1 interactions with BCR-FGFR1 for proliferation.”

When either Grb2 or PLCγ1 signaling pathway was mutated, BCR-FGFR1 activity was decreased, but never abolished. However, when both Grb2 and PLCγ1 interactions were mutated, both cell transformation and proliferation were inhibited. The team demonstrated that BCR-FGFR1 dually relies on Grb2 and PLCγ1 for biological activity and the activation of cell signaling pathways. The researchers also found that the PLCγ1 inhibitor U73122 revealed that PLCγ1 is a potential therapeutic target for BCR-FGFR1-driven hematologic malignancies. In addition, the irreversible FGFR inhibitor futibatinib suppressed downstream signaling and cell transformation. 

“We demonstrate here that BCR-FGFR1 relies dually on the small adapter protein, Grb2, and the phospholipase, PLCγ1, for biological activity and the activation of cell signaling pathways (summarized in Figure 6).”

Figure 6: Signaling pathways activated by BCR-FGFR1.
Figure 6: Signaling pathways activated by BCR-FGFR1.

Conclusion

“Our work highlights the importance of sequencing based, mutation-specific therapies for FGFR1 induced hematologic malignancies.”

This study provides new insight into the potential molecular mechanisms underlying BCR-FGFR1 activity and identifies PLCγ1 as a therapeutic target for leukemia/lymphoma patients with this particular mutation. Future studies will be necessary to validate these findings in animal models and clinical trials. However, this study lays the groundwork for the development of new and more targeted leukemia/lymphoma therapies.

“These data unravel essential roles of Grb2 and PLCγ1 in BCR-FGFR1 mediated oncogenic growth and suggest the importance of further investigation into PLCγ1 as a potential therapeutic target in treating SCLL.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.

Gene Variants Investigated in Polish Bladder and Kidney Cancer

Two gene variants were studied in large-scale cohorts for their potential roles in bladder and kidney cancer among Polish patients.

Genitourinary cancers are a group of cancers that affect components of the urinary tract, including the bladder and kidneys. Worldwide, bladder and kidney cancer impact men at disproportionately higher rates than women. While incidence and mortality rates of bladder cancer in most western European countries have been consistently decreasing, some countries in the region, such as Poland, have seen an increase. Bladder cancer is the 4th most common malignancy in Polish men and the 14th most common malignancy in Polish women. There is currently a need to identify more effective bladder cancer biomarkers and therapeutic targets to develop new effective treatments that improve patient outcomes.

“The association between the NOD2 c.3020insC allele and CDKN2A missense variant c.442G>A (p.P.A148T) and survival of patients with bladder or kidney cancer remains controversial.”

In April of 2022, researchers from Pomeranian Medical UniversityUniversity of Newcastle and NSW Health Pathology published the first larger-scale study in Poland to describe the clinical characteristics and survival of bladder cancer patients and kidney cancer patients associated with variants in NOD2 and CDKN2A. Their research paper was published in Oncotarget on April 22, 2022, and entitled, “Bladder cancer survival in patients with NOD2 or CDKN2A variants.”

The Study

In this study, the researchers investigated two gene variants—the NOD2 c.3020insC variant and the CDKN2A p.A148T polymorphism—and their role in bladder and kidney cancer in Polish cohorts. This NOD2 variant has been shown to occur in 7.3% of the Polish population. The CDKN2A polymorphism has been found in 3.5% of the Polish population. Therefore, these gene variants could be considered genetic risk factors for cancer. To test this hypothesis, the researchers assembled detailed participant data from a cohort of 706 bladder cancer patients and 410 kidney cancer patients. The team compiled control data from over 5,000 unselected, cancer-free individuals.

“To our knowledge, this is the first larger-scale study describing the clinical characteristics and survival of bladder and kidney cancer patients that is associated with the NOD2 c.3020insC allele and the CDKN2A p.A148T polymorphism in Poland.”

After performing the variant analysis in the cohort of Polish patients with bladder cancer, the team found that 8.9% of these patients carried the NOD2 variant and 5.2% carried the CDKN2A variant. However, their analysis revealed that neither the NOD2 nor the CDKN2A variant played a significant role in the survival of patients with bladder cancer. In performing the variant analysis in the cohort of Polish patients with kidney cancer, they found that 7.3% of these patients carried the NOD2 variant and 3.4% carried the CDKN2A variant. The researchers did not observe any statistically significant relationship between kidney cancer and either variant. However, they were not able to perform a survival analysis in the kidney cancer cohort.

Conclusion

The researchers found that the NOD2 c.3020insC variant and the CDKN2A p.A148T polymorphism were not significantly associated with the survival of bladder cancer patients, regardless of age, cancer family history, smoking status, and sex. To date, this is the first larger-scale study to examine these variants in association with clinical characteristics and survival of Polish patients with bladder cancer.

“In summary, the results of this study indicate that neither the NOD2 c.3020insC variant or the CDKN2A p.A148T polymorphism are associated with the survival of bladder cancer patients regardless of age, cancer family history, smoking status, and sex. Thus, the NOD2 c.3020insC or the CDKN2A p.A148T polymorphism cannot be added to the list of genes that are associated with an increased susceptibility to bladder or kidney cancer at this time.”

Click here to read the full research paper published by Oncotarget.

ONCOTARGET VIDEOS: YouTube | LabTube | Oncotarget.com

Oncotarget is an open-access journal that publishes primarily oncology-focused research papers in a continuous publishing format. These papers are available at no cost to readers on Oncotarget.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.

For media inquiries, please contact media@impactjournals.com.